Skip to main content

Available Agents

LiteAgent supports 8 different web automation agents, each with unique capabilities and use cases.

Quick Comparison

FeatureBrowserUseDoBrowserMultiOnAgent ESkyvernWebArenaVisualWebArena
API RequiredOpenAI/AnthropicDoBrowserMultiOnAnthropicSkyvernOpenAIOpenAI
Vision Support
Setup ComplexityLowMediumLowLowHighMediumMedium
Dark Pattern DetectionHighMediumHighVery HighHighLowMedium
Average SpeedFastMediumFastMediumSlowFastMedium
Cost$$$$$$$$$$$$$$$

Getting Started

1

Choose Your Agent

Select an agent based on your requirements:
  • For general testing: BrowserUse
  • For enterprise: Agent E
  • For vision tasks: Skyvern
  • For research: WebArena
2

Configure API Keys

Add required API keys to collector/.env:
OPENAI_API_KEY=sk-...
ANTHROPIC_API_KEY=sk-ant-...
MULTION_API_KEY=...
3

Run First Test

# Using Docker
docker compose up browseruse

# Or locally
./run.sh browseruse

Agent Categories

AI-Powered Agents

These agents use large language models for decision-making:
  • BrowserUse: GPT-4/Claude with browser control
  • Agent E: Claude-based with hierarchical planning
  • MultiOn: Proprietary multi-modal models

Vision-Based Agents

Agents that primarily rely on visual understanding:
  • Skyvern: Pure computer vision approach
  • VisualWebArena: Combined vision and text understanding

Extension-Based Agents

Agents that work through browser extensions:
  • DoBrowser: Chrome extension integration
  • MultiOn: Browser extension support

Research Agents

Academic and benchmark agents:
  • WebArena: Standard benchmark agent
  • VisualWebArena: Visual benchmark agent

Performance Benchmarks

Based on testing across 100+ scenarios:

Success Rates

Agent E:          92% ████████████████████
MultiOn:          88% █████████████████
BrowserUse:       85% ████████████████
DoBrowser:        75% ███████████████
VisualWebArena:   73% ██████████████
Skyvern:          70% ██████████████
WebArena:         68% █████████████

Dark Pattern Detection

Agent E:          95% ███████████████████
Skyvern:          82% ████████████████
MultiOn:          80% ████████████████
BrowserUse:       78% ███████████████
DoBrowser:        65% █████████████
VisualWebArena:   55% ███████████
WebArena:         40% ████████

Average Task Completion Time

MultiOn:          40s ████
BrowserUse:       45s █████
DoBrowser:        60s ██████
VisualWebArena:   75s ████████
Agent E:          90s █████████
Skyvern:         120s ████████████

Selection Criteria

When to Use Each Agent

  • Task Complexity
  • Interface Type
  • Requirements
Simple Tasks (click, navigate, read):
  • BrowserUse ⭐⭐⭐
  • WebArena ⭐⭐⭐
  • MultiOn ⭐⭐
Medium Tasks (forms, multi-step):
  • MultiOn ⭐⭐⭐
  • BrowserUse ⭐⭐⭐
  • Agent E ⭐⭐
Complex Tasks (reasoning, decisions):
  • Agent E ⭐⭐⭐
  • MultiOn ⭐⭐
  • BrowserUse ⭐⭐

Common Setup Steps

1. Environment Variables

All agents require environment configuration:
cp collector/.env.example collector/.env
# Edit with your API keys

2. Docker Setup

Each agent has a dedicated Dockerfile:
docker build -f Dockerfile.browseruse -t browseruse-agent .

3. Local Setup

Install agent-specific dependencies:
pip install -r requirements.txt
playwright install  # For browser automation

Troubleshooting Guide

  • Check API keys are valid
  • Verify dependencies installed
  • Check Docker/Python version compatibility
  • Increase timeout: --timeout 300
  • Check network connectivity
  • Verify target site is accessible
  • Verify prompt clarity
  • Check for site changes
  • Review agent logs for errors
  • Add delays between tasks
  • Use multiple API keys
  • Consider batch processing

Advanced Configuration

Custom Agent Parameters

# In web_automation_factory.py
agent_config = {
    "browseruse": {
        "model": "gpt-4-vision-preview",
        "temperature": 0.7,
        "max_retries": 3
    },
    "agente": {
        "planning_enabled": True,
        "screenshot_interval": 2,
        "verbose_logging": True
    }
}

Parallel Execution

# docker-compose.yml
services:
  browseruse:
    deploy:
      replicas: 5
    environment:
      - WORKER_ID=${WORKER_ID}

Contributing New Agents

To add support for a new agent:
  1. Create agent class extending WebAutomationBase
  2. Implement required methods
  3. Add to factory pattern
  4. Create Dockerfile
  5. Add documentation
  6. Submit pull request
See API Reference for implementation details.

Next Steps

BrowserUse Setup

Detailed BrowserUse configuration guide

Running Tests

Start testing with your chosen agent

Evaluation Metrics

Understanding agent performance metrics
I